Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early fault detection with multi-target neural networks (2106.08957v1)

Published 12 Jun 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Wind power is seeing a strong growth around the world. At the same time, shrinking profit margins in the energy markets let wind farm managers explore options for cost reductions in the turbine operation and maintenance. Sensor-based condition monitoring facilitates remote diagnostics of turbine subsystems, enabling faster responses when unforeseen maintenance is required. Condition monitoring with data from the turbines' supervisory control and data acquisition (SCADA) systems was proposed and SCADA-based fault detection and diagnosis approaches introduced based on single-task normal operation models of turbine state variables. As the number of SCADA channels has grown strongly, thousands of independent single-target models are in place today for monitoring a single turbine. Multi-target learning was recently proposed to limit the number of models. This study applied multi-target neural networks to the task of early fault detection in drive-train components. The accuracy and delay of detecting gear bearing faults were compared to state-of-the-art single-target approaches. We found that multi-target multi-layer perceptrons (MLPs) detected faults at least as early and in many cases earlier than single-target MLPs. The multi-target MLPs could detect faults up to several days earlier than the single-target models. This can deliver a significant advantage in the planning and performance of maintenance work. At the same time, the multi-target MLPs achieved the same level of prediction stability.

Citations (3)

Summary

We haven't generated a summary for this paper yet.