Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NOMA Power Minimization of Downlink Spectrum Slicing for eMBB and URLLC Users (2106.08847v2)

Published 16 Jun 2021 in cs.IT, eess.SP, and math.IT

Abstract: Spectrum slicing of the shared radio resources is a critical task in 5G networks with heterogeneous services, through which each service gets performance guarantees. In this paper, we consider a setup in which a Base Station (BS) should serve two types of traffic in the downlink, enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC), respectively. Two resource allocation strategies are compared: non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA). A framework for power minimization is presented, in which the BS knows the channel state information (CSI) of the eMBB users only. Nevertheless, due to the resource sharing, it is shown that this knowledge can be used also to the benefit of the URLLC users. The numerical results show that NOMA leads to a lower power consumption compared to OMA for every simulation parameter under test.

Citations (6)

Summary

We haven't generated a summary for this paper yet.