Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thompson Sampling for Unimodal Bandits (2106.08187v2)

Published 15 Jun 2021 in cs.LG and cs.AI

Abstract: In this paper, we propose a Thompson Sampling algorithm for \emph{unimodal} bandits, where the expected reward is unimodal over the partially ordered arms. To exploit the unimodal structure better, at each step, instead of exploration from the entire decision space, our algorithm makes decision according to posterior distribution only in the neighborhood of the arm that has the highest empirical mean estimate. We theoretically prove that, for Bernoulli rewards, the regret of our algorithm reaches the lower bound of unimodal bandits, thus it is asymptotically optimal. For Gaussian rewards, the regret of our algorithm is $\mathcal{O}(\log T)$, which is far better than standard Thompson Sampling algorithms. Extensive experiments demonstrate the effectiveness of the proposed algorithm on both synthetic data sets and the real-world applications.

Summary

We haven't generated a summary for this paper yet.