Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CatBoost model with synthetic features in application to loan risk assessment of small businesses (2106.07954v3)

Published 15 Jun 2021 in cs.CE and cs.LG

Abstract: Loan risk for small businesses has long been a complex problem worthy of exploring. Predicting the loan risk can benefit entrepreneurship by developing more jobs for the society. CatBoost (Categorical Boosting) is a powerful machine learning algorithm suitable for dataset with many categorical variables like the dataset for forecasting loan risk. In this paper, we identify the important risk factors that contribute to loan status classification problem. Then we compare the performance between boosting-type algorithms(especially CatBoost) with other traditional yet popular ones. The dataset we adopt in the research comes from the U.S. Small Business Administration (SBA) and holds a very large sample size (899,164 observations and 27 features). In order to make the best use of the important features in the dataset, we propose a technique named "synthetic generation" to develop more combined features based on arithmetic operation, which ends up improving the accuracy and AUC of the original CatBoost model. We obtain a high accuracy of 95.84% and well-performed AUC of 98.80% compared with the existent literature of related research.

Citations (3)

Summary

We haven't generated a summary for this paper yet.