Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Interpretive Learning as Metarule Specialisation (2106.07464v6)

Published 9 Jun 2021 in cs.LG, cs.AI, and cs.LO

Abstract: In Meta-Interpretive Learning (MIL) the metarules, second-order datalog clauses acting as inductive bias, are manually defined by the user. In this work we show that second-order metarules for MIL can be learned by MIL. We define a generality ordering of metarules by $\theta$-subsumption and show that user-defined \emph{sort metarules} are derivable by specialisation of the most-general \emph{matrix metarules} in a language class; and that these matrix metarules are in turn derivable by specialisation of third-order \emph{punch metarules} with variables quantified over the set of atoms and for which only an upper bound on their number of literals need be user-defined. We show that the cardinality of a metarule language is polynomial in the number of literals in punch metarules. We re-frame MIL as metarule specialisation by resolution. We modify the MIL metarule specialisation operator to return new metarules rather than first-order clauses and prove the correctness of the new operator. We implement the new operator as TOIL, a sub-system of the MIL system Louise. Our experiments show that as user-defined sort metarules are progressively replaced by sort metarules learned by TOIL, Louise's predictive accuracy and training times are maintained. We conclude that automatically derived metarules can replace user-defined metarules.

Citations (2)

Summary

We haven't generated a summary for this paper yet.