Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MexPub: Deep Transfer Learning for Metadata Extraction from German Publications (2106.07359v1)

Published 4 Jun 2021 in cs.IR, cs.CL, cs.CV, cs.DL, and cs.LG

Abstract: Extracting metadata from scientific papers can be considered a solved problem in NLP due to the high accuracy of state-of-the-art methods. However, this does not apply to German scientific publications, which have a variety of styles and layouts. In contrast to most of the English scientific publications that follow standard and simple layouts, the order, content, position and size of metadata in German publications vary greatly among publications. This variety makes traditional NLP methods fail to accurately extract metadata from these publications. In this paper, we present a method that extracts metadata from PDF documents with different layouts and styles by viewing the document as an image. We used Mask R-CNN that is trained on COCO dataset and finetuned with PubLayNet dataset that consists of ~200K PDF snapshots with five basic classes (e.g. text, figure, etc). We refine-tuned the model on our proposed synthetic dataset consisting of ~30K article snapshots to extract nine patterns (i.e. author, title, etc). Our synthetic dataset is generated using contents in both languages German and English and a finite set of challenging templates obtained from German publications. Our method achieved an average accuracy of around $90\%$ which validates its capability to accurately extract metadata from a variety of PDF documents with challenging templates.

Citations (9)

Summary

We haven't generated a summary for this paper yet.