Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Foveated Video Quality Using Entropic Differencing (2106.06817v1)

Published 12 Jun 2021 in eess.IV and cs.CV

Abstract: Virtual Reality is regaining attention due to recent advancements in hardware technology. Immersive images / videos are becoming widely adopted to carry omnidirectional visual information. However, due to the requirements for higher spatial and temporal resolution of real video data, immersive videos require significantly larger bandwidth consumption. To reduce stresses on bandwidth, foveated video compression is regaining popularity, whereby the space-variant spatial resolution of the retina is exploited. Towards advancing the progress of foveated video compression, we propose a full reference (FR) foveated image quality assessment algorithm, which we call foveated entropic differencing (FED), which employs the natural scene statistics of bandpass responses by applying differences of local entropies weighted by a foveation-based error sensitivity function. We evaluate the proposed algorithm by measuring the correlations of the predictions that FED makes against human judgements on the newly created 2D and 3D LIVE-FBT-FCVR databases for Virtual Reality (VR). The performance of the proposed algorithm yields state-of-the-art as compared with other existing full reference algorithms. Software for FED has been made available at: http://live.ece.utexas.edu/research/Quality/FED.zip

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yize Jin (3 papers)
  2. Anjul Patney (10 papers)
  3. Alan Bovik (10 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.