Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Least Common Multiple of Polynomial Sequences at Prime Arguments (2106.06782v4)

Published 12 Jun 2021 in math.NT

Abstract: Cilleruelo conjectured that if $f\in\mathbb{Z}[x]$ is an irreducible polynomial of degree $d\ge 2$ then, $\log \operatorname{lcm} {f(n)\mid n<x} \sim (d-1)x\log x.$ In this article, we investigate the analogue of prime arguments, namely, $\operatorname{lcm} {f(p)\mid p<x}$ where $p$ denotes a prime and obtain non-trivial lower bounds on it. Further, we also show some results regarding the greatest prime divisor of $f(p).$

Summary

We haven't generated a summary for this paper yet.