Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the robustness of Gaussian processes to kernel choice (2106.06510v2)

Published 11 Jun 2021 in stat.ML, cs.LG, and stat.CO

Abstract: Gaussian processes (GPs) are used to make medical and scientific decisions, including in cardiac care and monitoring of atmospheric carbon dioxide levels. Notably, the choice of GP kernel is often somewhat arbitrary. In particular, uncountably many kernels typically align with qualitative prior knowledge (e.g.\ function smoothness or stationarity). But in practice, data analysts choose among a handful of convenient standard kernels (e.g.\ squared exponential). In the present work, we ask: Would decisions made with a GP differ under other, qualitatively interchangeable kernels? We show how to answer this question by solving a constrained optimization problem over a finite-dimensional space. We can then use standard optimizers to identify substantive changes in relevant decisions made with a GP. We demonstrate in both synthetic and real-world examples that decisions made with a GP can exhibit non-robustness to kernel choice, even when prior draws are qualitatively interchangeable to a user.

Citations (8)

Summary

We haven't generated a summary for this paper yet.