Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding of probability distributions for Asymmetric Numeral Systems (2106.06438v4)

Published 11 Jun 2021 in cs.IT and math.IT

Abstract: Many data compressors regularly encode probability distributions for entropy coding - requiring minimal description length type of optimizations. Canonical prefix/Huffman coding usually just writes lengths of bit sequences, this way approximating probabilities with powers-of-2. Operating on more accurate probabilities usually allows for better compression ratios, and is possible e.g. using arithmetic coding and Asymmetric Numeral Systems family. Especially the multiplication-free tabled variant of the latter (tANS) builds automaton often replacing Huffman coding due to better compression at similar computational cost - e.g. in popular Facebook Zstandard and Apple LZFSE compressors. There is discussed encoding of probability distributions for such applications, especially using Pyramid Vector Quantizer(PVQ)-based approach with deformation, bucket approximation, prefix trees, improving accuracy with additional bits, also tuned symbol spread for tANS.

Citations (4)

Summary

We haven't generated a summary for this paper yet.