Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Classification with Adversarial Perturbations (2106.05964v2)

Published 10 Jun 2021 in cs.LG, cs.AI, cs.CY, cs.DS, and stat.ML

Abstract: We study fair classification in the presence of an omniscient adversary that, given an $\eta$, is allowed to choose an arbitrary $\eta$-fraction of the training samples and arbitrarily perturb their protected attributes. The motivation comes from settings in which protected attributes can be incorrect due to strategic misreporting, malicious actors, or errors in imputation; and prior approaches that make stochastic or independence assumptions on errors may not satisfy their guarantees in this adversarial setting. Our main contribution is an optimization framework to learn fair classifiers in this adversarial setting that comes with provable guarantees on accuracy and fairness. Our framework works with multiple and non-binary protected attributes, is designed for the large class of linear-fractional fairness metrics, and can also handle perturbations besides protected attributes. We prove near-tightness of our framework's guarantees for natural hypothesis classes: no algorithm can have significantly better accuracy and any algorithm with better fairness must have lower accuracy. Empirically, we evaluate the classifiers produced by our framework for statistical rate on real-world and synthetic datasets for a family of adversaries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. L. Elisa Celis (39 papers)
  2. Anay Mehrotra (25 papers)
  3. Nisheeth K. Vishnoi (73 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.