Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Knowing when we do not know: Bayesian continual learning for sensing-based analysis tasks (2106.05872v1)

Published 6 Jun 2021 in cs.LG

Abstract: Despite much research targeted at enabling conventional machine learning models to continually learn tasks and data distributions sequentially without forgetting the knowledge acquired, little effort has been devoted to account for more realistic situations where learning some tasks accurately might be more critical than forgetting previous ones. In this paper we propose a Bayesian inference based framework to continually learn a set of real-world, sensing-based analysis tasks that can be tuned to prioritize the remembering of previously learned tasks or the learning of new ones. Our experiments prove the robustness and reliability of the learned models to adapt to the changing sensing environment, and show the suitability of using uncertainty of the predictions to assess their reliability.

Citations (10)

Summary

We haven't generated a summary for this paper yet.