Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Kernel Representation Learning on Networks (2106.05057v2)

Published 9 Jun 2021 in cs.SI and cs.LG

Abstract: Learning representations of nodes in a low dimensional space is a crucial task with numerous interesting applications in network analysis, including link prediction, node classification, and visualization. Two popular approaches for this problem are matrix factorization and random walk-based models. In this paper, we aim to bring together the best of both worlds, towards learning node representations. In particular, we propose a weighted matrix factorization model that encodes random walk-based information about nodes of the network. The benefit of this novel formulation is that it enables us to utilize kernel functions without realizing the exact proximity matrix so that it enhances the expressiveness of existing matrix decomposition methods with kernels and alleviates their computational complexities. We extend the approach with a multiple kernel learning formulation that provides the flexibility of learning the kernel as the linear combination of a dictionary of kernels in data-driven fashion. We perform an empirical evaluation on real-world networks, showing that the proposed model outperforms baseline node embedding algorithms in downstream machine learning tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.