Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Models of Neural Plasticity: A Scaling Approach (2106.04845v2)

Published 9 Jun 2021 in math.PR and q-bio.NC

Abstract: In neuroscience, synaptic plasticity refers to the set of mechanisms driving the dynamics of neuronal connections, called synapses and represented by a scalar value, the synaptic weight. A Spike-Timing Dependent Plasticity (STDP) rule is a biologically-based model representing the time evolution of the synaptic weight as a functional of the past spiking activity of adjacent neurons. A general mathematical framework has been introduced in~arXiv:2010.08195. In this paper we develop and investigate a scaling approach of these models based on several biological assumptions. Experiments show that long-term synaptic plasticity evolves on a much slower timescale than the cellular mechanisms driving the activity of neuronal cells, like their spiking activity or the concentration of various chemical components created/suppressed by this spiking activity. For this reason, a scaled version of the stochastic model of~arXiv:2010.08195 is introduced and a limit theorem, an averaging principle, is stated for a large class of plasticity kernels. A companion paper~arXiv:2010.08790 is entirely devoted to the tightness properties used to prove these convergence results. These averaging principles are used to study two important STDP models: pair-based rules and calcium-based rules. Our results are compared with the approximations of neuroscience STDP models. A class of discrete models of STDP rules is also investigated for the analytical tractability of its limiting dynamical system.

Summary

We haven't generated a summary for this paper yet.