Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling for Poisson process intensities over irregular spatial domains (2106.04654v1)

Published 8 Jun 2021 in stat.ME

Abstract: We develop nonparametric Bayesian modelling approaches for Poisson processes, using weighted combinations of structured beta densities to represent the point process intensity function. For a regular spatial domain, such as the unit square, the model construction implies a Bernstein-Dirichlet prior for the Poisson process density, which supports general inference for point process functionals. The key contribution of the methodology is two classes of flexible and computationally efficient models for spatial Poisson process intensities over irregular domains. We address the choice or estimation of the number of beta basis densities, and develop methods for prior specification and posterior simulation for full inference about functionals of the point process. The methodology is illustrated with both synthetic and real data sets.

Summary

We haven't generated a summary for this paper yet.