Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FPT Algorithms to Compute the Elimination Distance to Bipartite Graphs and More (2106.04191v1)

Published 8 Jun 2021 in cs.DS

Abstract: For a hereditary graph class $\mathcal{H}$, the $\mathcal{H}$-elimination distance of a graph $G$ is the minimum number of rounds needed to reduce $G$ to a member of $\mathcal{H}$ by removing one vertex from each connected component in each round. The $\mathcal{H}$-treewidth of a graph $G$ is the minimum, taken over all vertex sets $X$ for which each connected component of $G - X$ belongs to $\mathcal{H}$, of the treewidth of the graph obtained from $G$ by replacing the neighborhood of each component of $G-X$ by a clique and then removing $V(G) \setminus X$. These parameterizations recently attracted interest because they are simultaneously smaller than the graph-complexity measures treedepth and treewidth, respectively, and the vertex-deletion distance to $\mathcal{H}$. For the class $\mathcal{H}$ of bipartite graphs, we present non-uniform fixed-parameter tractable algorithms for testing whether the $\mathcal{H}$-elimination distance or $\mathcal{H}$-treewidth of a graph is at most $k$. Along the way, we also provide such algorithms for all graph classes $\mathcal{H}$ defined by a finite set of forbidden induced subgraphs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.