Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diverse Pretrained Context Encodings Improve Document Translation (2106.03717v1)

Published 7 Jun 2021 in cs.CL

Abstract: We propose a new architecture for adapting a sentence-level sequence-to-sequence transformer by incorporating multiple pretrained document context signals and assess the impact on translation performance of (1) different pretraining approaches for generating these signals, (2) the quantity of parallel data for which document context is available, and (3) conditioning on source, target, or source and target contexts. Experiments on the NIST Chinese-English, and IWSLT and WMT English-German tasks support four general conclusions: that using pretrained context representations markedly improves sample efficiency, that adequate parallel data resources are crucial for learning to use document context, that jointly conditioning on multiple context representations outperforms any single representation, and that source context is more valuable for translation performance than target side context. Our best multi-context model consistently outperforms the best existing context-aware transformers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Domenic Donato (6 papers)
  2. Lei Yu (234 papers)
  3. Chris Dyer (91 papers)
Citations (12)