Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arrangements of orthogonal circles with many intersections (2106.03557v2)

Published 7 Jun 2021 in cs.CG and math.CO

Abstract: An arrangement of circles in which circles intersect only in angles of $\pi/2$ is called an \emph{arrangement of orthogonal circles}. We show that in the case that no two circles are nested, the intersection graph of such an arrangement is planar. The same result holds for arrangement of circles that intersect in an angle of at most $\pi/2$. For the general case we prove that the maximal number of edges in an intersection graph of an arrangement of orthogonal circles lies in between $4n - O\left(\sqrt{n}\right)$ and $\left(4+\frac{5}{11}\right)n$, for $n$ being the number of circles. Based on the lower bound we can also improve the bound for the number of triangles in arrangements of orthogonal circles to $(3 + 5/9)n-O\left(\sqrt{n}\right)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.