Papers
Topics
Authors
Recent
Search
2000 character limit reached

On groups presented by inverse-closed finite convergent length-reducing rewriting systems

Published 7 Jun 2021 in math.GR and cs.FL | (2106.03445v4)

Abstract: We show that groups presented by inverse-closed finite convergent length-reducing rewriting systems are characterised by a striking geometric property: their Cayley graphs are geodetic and side-lengths of non-degenerate triangles are uniformly bounded. This leads to a new algebraic result: the group is plain (isomorphic to the free product of finitely many finite groups and copies of $\mathbb Z$) if and only if a certain relation on the set of non-trivial finite-order elements of the group is transitive on a bounded set. We use this to prove that deciding if a group presented by an inverse-closed finite convergent length-reducing rewriting system is not plain is in $\mathsf{NP}$. A "yes" answer would disprove a longstanding conjecture of Madlener and Otto from 1987. We also prove that the isomorphism problem for plain groups presented by inverse-closed finite convergent length-reducing rewriting systems is in $\mathsf{PSPACE}$.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.