Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems (2106.02505v4)

Published 4 Jun 2021 in cs.SC, cs.NA, and math.NA

Abstract: We present a new data structure to approximate accurately and efficiently a polynomial $f$ of degree $d$ given as a list of coefficients. Its properties allow us to improve the state-of-the-art bounds on the bit complexity for the problems of root isolation and approximate multipoint evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the standard condition number of the zeros of a polynomial is at least exponential in the number of roots of modulus less than $1/2$ or greater than $2$.Given a polynomial $f$ of degree $d$ with $|f|_1 \leq 2\tau$ for $\tau \geq 1$, isolating all its complex roots or evaluating it at $d$ points can be done with a quasi-linear number of arithmetic operations. However, considering the bit complexity, the state-of-the-art algorithms require at least $d{3/2}$ bit operations even for well-conditioned polynomials and when the accuracy required is low. Given a positive integer $m$, we can compute our new data structure and evaluate $f$ at $d$ points in the unit disk with an absolute error less than $2{-m}$ in $\widetilde O(d(\tau+m))$ bit operations, where $\widetilde O(\cdot)$ means that we omit logarithmic factors. We also show that if $\kappa$ is the absolute condition number of the zeros of $f$, then we can isolate all the roots of $f$ in $\widetilde O(d(\tau + \log \kappa))$ bit operations. Moreover, our algorithms are simple to implement. For approximating the complex roots of a polynomial, we implemented a small prototype in \verb|Python/NumPy| that is an order of magnitude faster than the state-of-the-art solver \verb/MPSolve/ for high degree polynomials with random coefficients.

Citations (9)

Summary

We haven't generated a summary for this paper yet.