Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dialoging Resonance: How Users Perceive, Reciprocate and React to Chatbot's Self-Disclosure in Conversational Recommendations (2106.01666v2)

Published 3 Jun 2021 in cs.CL and cs.AI

Abstract: Using chatbots to deliver recommendations is increasingly popular. The design of recommendation chatbots has primarily been taking an information-centric approach by focusing on the recommended content per se. Limited attention is on how social connection and relational strategies, such as self-disclosure from a chatbot, may influence users' perception and acceptance of the recommendation. In this work, we designed, implemented, and evaluated a social chatbot capable of performing three different levels of self-disclosure: factual information (low), cognitive opinions (medium), and emotions (high). In the evaluation, we recruited 372 participants to converse with the chatbot on two topics: movies and COVID-19 experiences. In each topic, the chatbot performed small talks and made recommendations relevant to the topic. Participants were randomly assigned to four experimental conditions where the chatbot used factual, cognitive, emotional, and adaptive strategies to perform self-disclosures. By training a text classifier to identify users' level of self-disclosure in real-time, the adaptive chatbot can dynamically match its self-disclosure to the level of disclosure exhibited by the users. Our results show that users reciprocate with higher-level self-disclosure when a recommendation chatbot consistently displays emotions throughout the conversation. Chatbot's emotional disclosure also led to increased interactional enjoyment and more positive interpersonal perception towards the bot, fostering a stronger human-chatbot relationship and thus leading to increased recommendation effectiveness, including a higher tendency to accept the recommendation. We discuss the understandings obtained and implications to future design.

Citations (1)

Summary

We haven't generated a summary for this paper yet.