Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatically Detecting Cyberbullying Comments on Online Game Forums (2106.01598v2)

Published 3 Jun 2021 in cs.CL

Abstract: Online game forums are popular to most of game players. They use it to communicate and discuss the strategy of the game, or even to make friends. However, game forums also contain abusive and harassment speech, disturbing and threatening players. Therefore, it is necessary to automatically detect and remove cyberbullying comments to keep the game forum clean and friendly. We use the Cyberbullying dataset collected from World of Warcraft (WoW) and League of Legends (LoL) forums and train classification models to automatically detect whether a comment of a player is abusive or not. The result obtains 82.69% of macro F1-score for LoL forum and 83.86% of macro F1-score for WoW forum by the Toxic-BERT model on the Cyberbullying dataset.

Citations (8)

Summary

We haven't generated a summary for this paper yet.