Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Provably-Efficient Model-Free Algorithm for Constrained Markov Decision Processes (2106.01577v2)

Published 3 Jun 2021 in cs.LG and cs.AI

Abstract: This paper presents the first model-free, simulator-free reinforcement learning algorithm for Constrained Markov Decision Processes (CMDPs) with sublinear regret and zero constraint violation. The algorithm is named Triple-Q because it includes three key components: a Q-function (also called action-value function) for the cumulative reward, a Q-function for the cumulative utility for the constraint, and a virtual-Queue that (over)-estimates the cumulative constraint violation. Under Triple-Q, at each step, an action is chosen based on the pseudo-Q-value that is a combination of the three "Q" values. The algorithm updates the reward and utility Q-values with learning rates that depend on the visit counts to the corresponding (state, action) pairs and are periodically reset. In the episodic CMDP setting, Triple-Q achieves $\tilde{\cal O}\left(\frac{1 }{\delta}H4 S{\frac{1}{2}}A{\frac{1}{2}}K{\frac{4}{5}} \right)$ regret, where $K$ is the total number of episodes, $H$ is the number of steps in each episode, $S$ is the number of states, $A$ is the number of actions, and $\delta$ is Slater's constant. Furthermore, Triple-Q guarantees zero constraint violation, both on expectation and with a high probability, when $K$ is sufficiently large. Finally, the computational complexity of Triple-Q is similar to SARSA for unconstrained MDPs and is computationally efficient.

Citations (22)

Summary

We haven't generated a summary for this paper yet.