Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Acoustic-based Approaches for Alzheimer's Disease Detection (2106.01555v2)

Published 3 Jun 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Robust strategies for Alzheimer's disease (AD) detection are important, given the high prevalence of AD. In this paper, we study the performance and generalizability of three approaches for AD detection from speech on the recent ADReSSo challenge dataset: 1) using conventional acoustic features 2) using novel pre-trained acoustic embeddings 3) combining acoustic features and embeddings. We find that while feature-based approaches have a higher precision, classification approaches relying on pre-trained embeddings prove to have a higher, and more balanced cross-validated performance across multiple metrics of performance. Further, embedding-only approaches are more generalizable. Our best model outperforms the acoustic baseline in the challenge by 2.8%.

Citations (38)

Summary

We haven't generated a summary for this paper yet.