Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-Objectivizing Software Configuration Tuning (for a single performance concern)

Published 31 May 2021 in cs.DC and cs.AI | (2106.01331v1)

Abstract: Automatically tuning software configuration for optimizing a single performance attribute (e.g., minimizing latency) is not trivial, due to the nature of the configuration systems (e.g., complex landscape and expensive measurement). To deal with the problem, existing work has been focusing on developing various effective optimizers. However, a prominent issue that all these optimizers need to take care of is how to avoid the search being trapped in local optima -- a hard nut to crack for software configuration tuning due to its rugged and sparse landscape, and neighboring configurations tending to behave very differently. Overcoming such in an expensive measurement setting is even more challenging. In this paper, we take a different perspective to tackle this issue. Instead of focusing on improving the optimizer, we work on the level of optimization model. We do this by proposing a meta multi-objectivization model (MMO) that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Experiments on eight real-world software systems/environments with diverse performance attributes reveal that our MMO model is statistically more effective than state-of-the-art single-objective counterparts in overcoming local optima (up to 42% gain), while using as low as 24% of their measurements to achieve the same (or better) performance result.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.