Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Nichols bicharacter algebras (2106.00552v2)

Published 1 Jun 2021 in math.QA and math.CO

Abstract: In this paper we define two Lie operations, and with that we define the bicharacter algebras, Nichols bicharacter algebras, quantum Nichols bicharacter algebras, etc. We obtain explicit bases for $\mathfrak L(V)${\tiny ${R}$} and $\mathfrak L(V)${\tiny ${L}$} over (i) the quantum linear space $V$ with $\dim V=2$; (ii) a connected braided vector $V$ of diagonal type with $\dim V=2$ and $p_{1,1}=p_{2,2}= -1$. We give the sufficient and necessary conditions for $\mathfrak L(V)${\tiny ${R}$}$= \mathfrak L(V)$, $\mathfrak L(V)${\tiny ${L}$}$= \mathfrak L(V)$, $\mathfrak B(V) = F\oplus \mathfrak L(V)${\tiny ${R}$} and $\mathfrak B(V) = F\oplus \mathfrak L(V)${\tiny ${L}$}, respectively. We show that if $\mathfrak B(V)$ is a connected Nichols algebra of diagonal type with $\dim V>1$, then $\mathfrak B(V)$ is finite-dimensional if and only if $\mathfrak L(V)${\tiny ${L}$} is finite-dimensional if and only if $\mathfrak L(V)${\tiny ${R}$} is finite-dimensional.

Summary

We haven't generated a summary for this paper yet.