Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local and uniform moduli of continuity of chi--square processes (2106.00542v1)

Published 1 Jun 2021 in math.PR

Abstract: Let $\eta={\eta(t);t\in [0,1]}$ be a mean zero continuous Gaussian process with covariance $U={U(s,t),s,t\in [ 0,1]},$ with $U(0,0)>0$. Let ${\eta_{i};i=1,\ldots, k}$ be independent copies of $\eta$ and set $ Y_{k}(t)=\sum_{i=1}{k} \eta2_{i}(t), t\in [ 0,1].$ The stochastic process $Y_{k } ={Y_{k }(t),t\in [ 0,1] }$ is referred to as a chi--square process of order $k $ with kernel $U$. Let $\phi(t)$ be a positive function on $[0,\delta]$ for some $\delta>0$. If [\limsup_{t\to 0}\frac{ \eta(t)-\eta(0)}{ \phi(t) }=1 \qquad a.s., ] then for all integers $k\ge 1$, [ \limsup_{t\to 0} \frac{Y_{k }(t)-Y_{k }(0)} { \phi (t)} = 2 Y{1/2}_{k}(0) \qquad a.s.] Set [ \sigma2(u,v)=E(\eta(u)-\eta(v))2\quad\text{and}\quad \widetilde\sigma2(x)=\sup_{|u-v|\le x}\sigma2(u,v).] Assume that $\inf_{t\in [0,1]}U(t,t)>0$ and, [ \lim_{x\to0}\widetilde\sigma2(x)\log 1/x =0. ] Let $\varphi(t)$ be a positive function on $[0,1]$. Then if [ \lim_{h\to 0}\sup_{\stackrel{|u-v|\le h }{ u,v\in\Delta}}\frac{ \eta(u)-\eta(v)}{ \varphi(|u-v|) }=1 \qquad a.s.] for all intervals $\Delta\subset [0,1]$, it follows that for all intervals $\Delta\subset [0,1]$ and all integers $k\ge 1$, [ \lim_{h\to 0}\sup_{\stackrel{|u-v|\le h }{ u,v\in\Delta}} \frac{Y_{k }(u)-Y_{k }(v) }{ \varphi (|u-v|)} = 2 \sup_{u\in\Delta}Y_{k }{1/2}(u), \hspace{.2 in}a.s.]

Summary

We haven't generated a summary for this paper yet.