Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PanoDR: Spherical Panorama Diminished Reality for Indoor Scenes (2106.00446v1)

Published 1 Jun 2021 in cs.CV

Abstract: The rising availability of commercial $360\circ$ cameras that democratize indoor scanning, has increased the interest for novel applications, such as interior space re-design. Diminished Reality (DR) fulfills the requirement of such applications, to remove existing objects in the scene, essentially translating this to a counterfactual inpainting task. While recent advances in data-driven inpainting have shown significant progress in generating realistic samples, they are not constrained to produce results with reality mapped structures. To preserve the `reality' in indoor (re-)planning applications, the scene's structure preservation is crucial. To ensure structure-aware counterfactual inpainting, we propose a model that initially predicts the structure of an indoor scene and then uses it to guide the reconstruction of an empty -- background only -- representation of the same scene. We train and compare against other state-of-the-art methods on a version of the Structured3D dataset modified for DR, showing superior results in both quantitative metrics and qualitative results, but more interestingly, our approach exhibits a much faster convergence rate. Code and models are available at https://vcl3d.github.io/PanoDR/ .

Citations (23)

Summary

We haven't generated a summary for this paper yet.