Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relational Reasoning Networks (2106.00393v3)

Published 1 Jun 2021 in cs.AI and cs.LG

Abstract: Neuro-symbolic methods integrate neural architectures, knowledge representation and reasoning. However, they have been struggling at both dealing with the intrinsic uncertainty of the observations and scaling to real-world applications. This paper presents Relational Reasoning Networks (R2N), a novel end-to-end model that performs relational reasoning in the latent space of a deep learner architecture, where the representations of constants, ground atoms and their manipulations are learned in an integrated fashion. Unlike flat architectures like Knowledge Graph Embedders, which can only represent relations between entities, R2Ns define an additional computational structure, accounting for higher-level relations among the ground atoms. The considered relations can be explicitly known, like the ones defined by logic formulas, or defined as unconstrained correlations among groups of ground atoms. R2Ns can be applied to purely symbolic tasks or as a neuro-symbolic platform to integrate learning and reasoning in heterogeneous problems with both symbolic and feature-based represented entities. The proposed model overtakes the limitations of previous neuro-symbolic methods that have been either limited in terms of scalability or expressivity. The proposed methodology is shown to achieve state-of-the-art results in different experimental settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Giuseppe Marra (39 papers)
  2. Michelangelo Diligenti (17 papers)
  3. Francesco Giannini (28 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.