Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Junta Distance Approximation with Sub-Exponential Queries (2106.00287v1)

Published 1 Jun 2021 in cs.DS and cs.CC

Abstract: Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the \emph{tolerant testing} of juntas. Given black-box access to a Boolean function $f:{\pm1}{n} \to {\pm1}$, we give a $poly(k, \frac{1}{\varepsilon})$ query algorithm that distinguishes between functions that are $\gamma$-close to $k$-juntas and $(\gamma+\varepsilon)$-far from $k'$-juntas, where $k' = O(\frac{k}{\varepsilon2})$. In the non-relaxed setting, we extend our ideas to give a $2{\tilde{O}(\sqrt{k/\varepsilon})}$ (adaptive) query algorithm that distinguishes between functions that are $\gamma$-close to $k$-juntas and $(\gamma+\varepsilon)$-far from $k$-juntas. To the best of our knowledge, this is the first subexponential-in-$k$ query algorithm for approximating the distance of $f$ to being a $k$-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in $k$). Our techniques are Fourier analytical and make use of the notion of "normalized influences" that was introduced by Talagrand [AoP, 1994].

Citations (11)

Summary

We haven't generated a summary for this paper yet.