Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Coarse to Fine Question Answering System based on Reinforcement Learning (2106.00257v1)

Published 1 Jun 2021 in cs.CL and cs.AI

Abstract: In this paper, we present a coarse to fine question answering (CFQA) system based on reinforcement learning which can efficiently processes documents with different lengths by choosing appropriate actions. The system is designed using an actor-critic based deep reinforcement learning model to achieve multi-step question answering. Compared to previous QA models targeting on datasets mainly containing either short or long documents, our multi-step coarse to fine model takes the merits from multiple system modules, which can handle both short and long documents. The system hence obtains a much better accuracy and faster trainings speed compared to the current state-of-the-art models. We test our model on four QA datasets, WIKEREADING, WIKIREADING LONG, CNN and SQuAD, and demonstrate 1.3$\%$-1.7$\%$ accuracy improvements with 1.5x-3.4x training speed-ups in comparison to the baselines using state-of-the-art models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.