Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial VQA: A New Benchmark for Evaluating the Robustness of VQA Models (2106.00245v2)

Published 1 Jun 2021 in cs.CV and cs.CL

Abstract: Benefiting from large-scale pre-training, we have witnessed significant performance boost on the popular Visual Question Answering (VQA) task. Despite rapid progress, it remains unclear whether these state-of-the-art (SOTA) models are robust when encountering examples in the wild. To study this, we introduce Adversarial VQA, a new large-scale VQA benchmark, collected iteratively via an adversarial human-and-model-in-the-loop procedure. Through this new benchmark, we discover several interesting findings. (i) Surprisingly, we find that during dataset collection, non-expert annotators can easily attack SOTA VQA models successfully. (ii) Both large-scale pre-trained models and adversarial training methods achieve far worse performance on the new benchmark than over standard VQA v2 dataset, revealing the fragility of these models while demonstrating the effectiveness of our adversarial dataset. (iii) When used for data augmentation, our dataset can effectively boost model performance on other robust VQA benchmarks. We hope our Adversarial VQA dataset can shed new light on robustness study in the community and serve as a valuable benchmark for future work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Linjie Li (89 papers)
  2. Jie Lei (52 papers)
  3. Zhe Gan (135 papers)
  4. Jingjing Liu (139 papers)
Citations (67)

Summary

We haven't generated a summary for this paper yet.