Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Hierarchical Attention for Answering Complex Questions over Long Documents (2106.00200v2)

Published 1 Jun 2021 in cs.CL and cs.AI

Abstract: We propose a new model, DocHopper, that iteratively attends to different parts of long, hierarchically structured documents to answer complex questions. Similar to multi-hop question-answering (QA) systems, at each step, DocHopper uses a query $q$ to attend to information from a document, combines this retrieved'' information with $q$ to produce the next query. However, in contrast to most previous multi-hop QA systems, DocHopper is able toretrieve'' either short passages or long sections of the document, thus emulating a multi-step process of ``navigating'' through a long document to answer a question. To enable this novel behavior, DocHopper does not combine document information with $q$ by concatenating text to the text of $q$, but by combining a compact neural representation of $q$ with a compact neural representation of a hierarchical part of the document, which can potentially be quite large. We experiment with DocHopper on four different QA tasks that require reading long and complex documents to answer multi-hop questions, and show that DocHopper achieves state-of-the-art results on three of the datasets. Additionally, DocHopper is efficient at inference time, being 3--10 times faster than the baselines.

Citations (12)

Summary

We haven't generated a summary for this paper yet.