Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Security in Vehicular Networks: A Comprehensive Survey (2105.15035v2)

Published 31 May 2021 in cs.LG, cs.CR, and cs.NI

Abstract: Machine Learning (ML) has emerged as an attractive and viable technique to provide effective solutions for a wide range of application domains. An important application domain is vehicular networks wherein ML-based approaches are found to be very useful to address various problems. The use of wireless communication between vehicular nodes and/or infrastructure makes it vulnerable to different types of attacks. In this regard, ML and its variants are gaining popularity to detect attacks and deal with different kinds of security issues in vehicular communication. In this paper, we present a comprehensive survey of ML-based techniques for different security issues in vehicular networks. We first briefly introduce the basics of vehicular networks and different types of communications. Apart from the traditional vehicular networks, we also consider modern vehicular network architectures. We propose a taxonomy of security attacks in vehicular networks and discuss various security challenges and requirements. We classify the ML techniques developed in the literature according to their use in vehicular network applications. We explain the solution approaches and working principles of these ML techniques in addressing various security challenges and provide insightful discussion. The limitations and challenges in using ML-based methods in vehicular networks are discussed. Finally, we present observations and lessons learned before we conclude our work.

Citations (50)

Summary

We haven't generated a summary for this paper yet.