Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coloring Trees in Massively Parallel Computation (2105.13980v2)

Published 28 May 2021 in cs.DC and cs.DS

Abstract: We present $O(\log2 \log n)$ time 3-coloring, maximal independent set and maximal matching algorithms for trees in the Massively Parallel Computation (MPC) model. Our algorithms are deterministic, apply to arbitrary-degree trees and work in the low-space MPC model, where local memory is $O(n\delta)$ for $\delta \in (0,1)$ and global memory is $O(m)$. Our main result is the 3-coloring algorithm, which contrasts the randomized, state-of-the-art 4-coloring algorithm of Ghaffari, Grunau and Jin [DISC'20]. The maximal independent set and maximal matching algorithms follow in $O(1)$ time after obtaining the coloring. The key ingredient of our 3-coloring algorithm is an $O(\log2 \log n)$ time adaptation of the rake-and-compress tree decomposition used by Chang and Pettie [FOCS'17], and established by Miller and Reif. When restricting our attention to trees of constant degree, we bring the runtime down to $O(\log \log n)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.