Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demotivate adversarial defense in remote sensing (2105.13902v1)

Published 28 May 2021 in cs.CV and eess.IV

Abstract: Convolutional neural networks are currently the state-of-the-art algorithms for many remote sensing applications such as semantic segmentation or object detection. However, these algorithms are extremely sensitive to over-fitting, domain change and adversarial examples specifically designed to fool them. While adversarial attacks are not a threat in most remote sensing applications, one could wonder if strengthening networks to adversarial attacks could also increase their resilience to over-fitting and their ability to deal with the inherent variety of worldwide data. In this work, we study both adversarial retraining and adversarial regularization as adversarial defenses to this purpose. However, we show through several experiments on public remote sensing datasets that adversarial robustness seems uncorrelated to geographic and over-fitting robustness.

Citations (4)

Summary

We haven't generated a summary for this paper yet.