Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable Enterprise Credit Rating via Deep Feature Crossing Network (2105.13843v1)

Published 22 May 2021 in cs.LG and cs.CE

Abstract: Due to the powerful learning ability on high-rank and non-linear features, deep neural networks (DNNs) are being applied to data mining and machine learning in various fields, and exhibit higher discrimination performance than conventional methods. However, the applications based on DNNs are rare in enterprise credit rating tasks because most of DNNs employ the "end-to-end" learning paradigm, which outputs the high-rank representations of objects and predictive results without any explanations. Thus, users in the financial industry cannot understand how these high-rank representations are generated, what do they mean and what relations exist with the raw inputs. Then users cannot determine whether the predictions provided by DNNs are reliable, and not trust the predictions providing by such "black box" models. Therefore, in this paper, we propose a novel network to explicitly model the enterprise credit rating problem using DNNs and attention mechanisms. The proposed model realizes explainable enterprise credit ratings. Experimental results obtained on real-world enterprise datasets verify that the proposed approach achieves higher performance than conventional methods, and provides insights into individual rating results and the reliability of model training.

Citations (2)

Summary

We haven't generated a summary for this paper yet.