Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the condition number of the shifted real Ginibre ensemble (2105.13719v3)

Published 28 May 2021 in math.NA, cs.NA, and math.PR

Abstract: We derive an accurate lower tail estimate on the lowest singular value $\sigma_1(X-z)$ of a real Gaussian (Ginibre) random matrix $X$ shifted by a complex parameter $z$. Such shift effectively changes the upper tail behaviour of the condition number $\kappa(X-z)$ from the slower $\mathbf{P}(\kappa(X-z)\ge t)\lesssim 1/t$ decay typical for real Ginibre matrices to the faster $1/t2$ decay seen for complex Ginibre matrices as long as $z$ is away from the real axis. This sharpens and resolves a recent conjecture in [arXiv:2005.08930] on the regularizing effect of the real Ginibre ensemble with a genuinely complex shift. As a consequence we obtain an improved upper bound on the eigenvalue condition numbers (known also as the eigenvector overlaps) for real Ginibre matrices. The main technical tool is a rigorous supersymmetric analysis from our earlier work [arXiv:1908.01653].

Citations (15)

Summary

We haven't generated a summary for this paper yet.