Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voice Activity Detection for Ultrasound-based Silent Speech Interfaces using Convolutional Neural Networks (2105.13718v3)

Published 28 May 2021 in cs.SD and eess.AS

Abstract: Voice Activity Detection (VAD) is not easy task when the input audio signal is noisy, and it is even more complicated when the input is not even an audio recording. This is the case with Silent Speech Interfaces (SSI) where we record the movement of the articulatory organs during speech, and we aim to reconstruct the speech signal from this recording. Our SSI system synthesizes speech from ultrasonic videos of the tongue movement, and the quality of the resulting speech signals are evaluated by metrics such as the mean squared error loss function of the underlying neural network and the Mel-Cepstral Distortion (MCD) of the reconstructed speech compared to the original. Here, we first demonstrate that the amount of silence in the training data can have an influence both on the MCD evaluation metric and on the performance of the neural network model. Then, we train a convolutional neural network classifier to separate silent and speech-containing ultrasound tongue images, using a conventional VAD algorithm to create the training labels from the corresponding speech signal. In the experiments our ultrasound-based speech/silence separator achieved a classification accuracy of about 85\% and an AUC score around 86\%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.