Investigating Code-Mixed Modern Standard Arabic-Egyptian to English Machine Translation (2105.13573v1)
Abstract: Recent progress in neural machine translation (NMT) has made it possible to translate successfully between monolingual language pairs where large parallel data exist, with pre-trained models improving performance even further. Although there exists work on translating in code-mixed settings (where one of the pairs includes text from two or more languages), it is still unclear what recent success in NMT and LLMing exactly means for translating code-mixed text. We investigate one such context, namely MT from code-mixed Modern Standard Arabic and Egyptian Arabic (MSAEA) into English. We develop models under different conditions, employing both (i) standard end-to-end sequence-to-sequence (S2S) Transformers trained from scratch and (ii) pre-trained S2S LLMs (LMs). We are able to acquire reasonable performance using only MSA-EN parallel data with S2S models trained from scratch. We also find LMs fine-tuned on data from various Arabic dialects to help the MSAEA-EN task. Our work is in the context of the Shared Task on Machine Translation in Code-Switching. Our best model achieves $\bf25.72$ BLEU, placing us first on the official shared task evaluation for MSAEA-EN.
- El Moatez Billah Nagoudi (31 papers)
- AbdelRahim Elmadany (33 papers)
- Muhammad Abdul-Mageed (102 papers)