Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Sparsity Bound for the Existence of a Unique Solution in Compressive Sensing by the Gershgorin Theorem (2105.13198v1)

Published 27 May 2021 in cs.IT and math.IT

Abstract: Since compressive sensing deals with a signal reconstruction using a reduced set of measurements, the existence of a unique solution is of crucial importance. The most important approach to this problem is based on the restricted isometry property which is computationally unfeasible. The coherence index-based uniqueness criteria are computationally efficient, however, they are pessimistic. An approach to alleviate this problem has been recently introduced by relaxing the coherence index condition for the unique signal reconstruction using the orthogonal matching pursuit approach. This approach can be further relaxed and the sparsity bound improved if we consider only the solution existence rather than its reconstruction. One such improved bound for the sparsity limit is derived in this paper using the Gershgorin disk theorem.

Citations (7)

Summary

We haven't generated a summary for this paper yet.