Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A projection method for Navier-Stokes equations with a boundary condition including the total pressure (2105.13014v2)

Published 27 May 2021 in math.NA, cs.NA, and math.AP

Abstract: We consider a projection method for time-dependent incompressible Navier-Stokes equations with a total pressure boundary condition. The projection method is one of the numerical calculation methods for incompressible viscous fluids often used in engineering. In general, the projection method needs additional boundary conditions to solve a pressure-Poisson equation, which does not appear in the original Navier-Stokes problem. On the other hand, many mechanisms generate flow by creating a pressure difference, such as water distribution systems and blood circulation. We propose a new additional boundary condition for the projection method with a Dirichlet-type pressure boundary condition and no tangent flow. We demonstrate stability for the scheme and establish error estimates for the velocity and pressure under suitable norms. A numerical experiment verifies the theoretical convergence results. Furthermore, the existence of a weak solution to the original Navier-Stokes problem is proved by using the stability.

Citations (4)

Summary

We haven't generated a summary for this paper yet.