Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improve Query Focused Abstractive Summarization by Incorporating Answer Relevance (2105.12969v2)

Published 27 May 2021 in cs.CL

Abstract: Query focused summarization (QFS) models aim to generate summaries from source documents that can answer the given query. Most previous work on QFS only considers the query relevance criterion when producing the summary. However, studying the effect of answer relevance in the summary generating process is also important. In this paper, we propose QFS-BART, a model that incorporates the explicit answer relevance of the source documents given the query via a question answering model, to generate coherent and answer-related summaries. Furthermore, our model can take advantage of large pre-trained models which improve the summarization performance significantly. Empirical results on the Debatepedia dataset show that the proposed model achieves the new state-of-the-art performance.

Citations (26)

Summary

We haven't generated a summary for this paper yet.