Optimal orders of the best constants in the Littlewood-Paley inequalities (2105.12795v3)
Abstract: Let ${\mathbb{P}t}{t>0}$ be the classical Poisson semigroup on $\mathbb{R}d$ and $G{\mathbb{P}}$ the associated Littlewood-Paley $g$-function operator: $$G{\mathbb{P}}(f)=\Big(\int_0\infty t|\frac{\partial}{\partial t} \mathbb{P}t(f)|2dt\Big){\frac12}.$$ The classical Littlewood-Paley $g$-function inequality asserts that for any $1<p<\infty$ there exist two positive constants $\mathsf{L}{\mathbb{P}}{t, p}$ and $\mathsf{L}{\mathbb{P}}_{c, p}$ such that $$ \big(\mathsf{L}{\mathbb{P}}_{t, p}\big){-1}\big|f\big|_{p}\le \big|G{\mathbb{P}}(f)\big|_{p} \le \mathsf{L}{\mathbb{P}}{c,p}\big|f\big|{p}\,,\quad f\in L_p(\mathbb{R}d). $$ We determine the optimal orders of magnitude on $p$ of these constants as $p\to1$ and $p\to\infty$. We also consider similar problems for more general test functions in place of the Poisson kernel. The corresponding problem on the Littlewood-Paley dyadic square function inequality is investigated too. Let $\Delta$ be the partition of $\mathbb{R}d$ into dyadic rectangles and $S_R$ the partial sum operator associated to $R$. The dyadic Littlewood-Paley square function of $f$ is $$S\Delta(f)=\Big(\sum_{R\in\Delta} |S_R(f)|2\Big){\frac12}.$$ For $1<p<\infty$ there exist two positive constants $\mathsf{L}{\Delta}_{c,p, d}$ and $ \mathsf{L}{\Delta}_{t,p, d}$ such that $$ \big(\mathsf{L}{\Delta}_{t,p, d}\big){-1}\big|f\big|_{p}\le \big|S\Delta(f)\big|_{p}\le \mathsf{L}{\Delta}_{c,p, d}\big|f\big|{p},\quad f\in L_p(\mathbb{R}d). $$ We show that $$\mathsf{L}{\Delta}{t,p, d}\approx_d (\mathsf{L}{\Delta}_{t,p, 1})d\;\text{ and }\; \mathsf{L}{\Delta}_{c,p, d}\approx_d (\mathsf{L}{\Delta}_{c,p, 1})d.$$ All the previous results can be equally formulated for the $d$-torus $\mathbb{T}d$. We prove a de Leeuw type transference principle in the vector-valued setting.