Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Repair of Unrealisable LTL Specifications Guided by Model Counting (2105.12595v2)

Published 26 May 2021 in cs.SE

Abstract: The reactive synthesis problem consists of automatically producing correct-by-construction operational models of systems from high-level formal specifications of their behaviours. However, specifications are often unrealisable, meaning that no system can be synthesised from the specification. To deal with this problem, we present AuRUS, a search-based approach to repair unrealisable Linear-Time Temporal Logic (LTL) specifications. AuRUS aims at generating solutions that are similar to the original specifications by using the notions of syntactic and semantic similarities. Intuitively, the syntactic similarity measures the text similarity between the specifications, while the semantic similarity measures the number of behaviours preserved/removed by the candidate repair. We propose a new heuristic based on model counting to approximate semantic similarity. We empirically assess AuRUS on many unrealisable specifications taken from different benchmarks and show that it can successfully repair all of them. Also, compared to related techniques, AuRUS can produce many unique solutions while showing more scalability.

Citations (8)

Summary

We haven't generated a summary for this paper yet.