Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Sign Language Translation with Monolingual Data by Sign Back-Translation (2105.12397v1)

Published 26 May 2021 in cs.CV and cs.CL

Abstract: Despite existing pioneering works on sign language translation (SLT), there is a non-trivial obstacle, i.e., the limited quantity of parallel sign-text data. To tackle this parallel data bottleneck, we propose a sign back-translation (SignBT) approach, which incorporates massive spoken language texts into SLT training. With a text-to-gloss translation model, we first back-translate the monolingual text to its gloss sequence. Then, the paired sign sequence is generated by splicing pieces from an estimated gloss-to-sign bank at the feature level. Finally, the synthetic parallel data serves as a strong supplement for the end-to-end training of the encoder-decoder SLT framework. To promote the SLT research, we further contribute CSL-Daily, a large-scale continuous SLT dataset. It provides both spoken language translations and gloss-level annotations. The topic revolves around people's daily lives (e.g., travel, shopping, medical care), the most likely SLT application scenario. Extensive experimental results and analysis of SLT methods are reported on CSL-Daily. With the proposed sign back-translation method, we obtain a substantial improvement over previous state-of-the-art SLT methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hao Zhou (351 papers)
  2. Wengang Zhou (153 papers)
  3. Weizhen Qi (15 papers)
  4. Junfu Pu (11 papers)
  5. Houqiang Li (236 papers)
Citations (150)

Summary

We haven't generated a summary for this paper yet.