Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ranking earthquake forecasts using proper scoring rules: Binary events in a low probability environment (2105.12065v2)

Published 25 May 2021 in stat.AP

Abstract: Operational earthquake forecasting for risk management and communication during seismic sequences depends on our ability to select an optimal forecasting model. To do this, we need to compare the performance of competing models with each other in prospective forecasting mode, and to rank their performance using a fair, reproducible and reliable method. The Collaboratory for the Study of Earthquake Predictability (CSEP) conducts such prospective earthquake forecasting experiments around the globe. One metric that has been proposed to rank competing models is the Parimutuel Gambling score, which has the advantage of allowing alarm-based (categorical) forecasts to be compared with probabilistic ones. Here we examine the suitability of this score for ranking competing earthquake forecasts. First, we prove analytically that this score is in general improper, meaning that, on average, it does not prefer the model that generated the data. Even in the special case where it is proper, we show it can still be used in an improper way. Then, we compare its performance with two commonly-used proper scores (the Brier and logarithmic scores), taking into account the uncertainty around the observed average score. We estimate the confidence intervals for the expected score difference which allows us to define if and when a model can be preferred. Our findings suggest the Parimutuel Gambling score should not be used to distinguishing between multiple competing forecasts. They also enable a more rigorous approach to distinguish between the predictive skills of candidate forecasts in addition to their rankings.

Summary

We haven't generated a summary for this paper yet.