Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Subspace Learning for Dimensionality Reduction to Improve Classification Accuracy in Large Data Sets (2105.12005v1)

Published 25 May 2021 in cs.LG and stat.ML

Abstract: Manifold learning is used for dimensionality reduction, with the goal of finding a projection subspace to increase and decrease the inter- and intraclass variances, respectively. However, a bottleneck for subspace learning methods often arises from the high dimensionality of datasets. In this paper, a hierarchical approach is proposed to scale subspace learning methods, with the goal of improving classification in large datasets by a range of 3% to 10%. Different combinations of methods are studied. We assess the proposed method on five publicly available large datasets, for different eigen-value based subspace learning methods such as linear discriminant analysis, principal component analysis, generalized discriminant analysis, and reconstruction independent component analysis. To further examine the effect of the proposed method on various classification methods, we fed the generated result to linear discriminant analysis, quadratic linear analysis, k-nearest neighbor, and random forest classifiers. The resulting classification accuracies are compared to show the effectiveness of the hierarchical approach, reporting results of an average of 5% increase in classification accuracy.

Summary

We haven't generated a summary for this paper yet.