Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Erdős-Pósa property for long holes in $C_4$-free graphs (2105.11799v1)

Published 25 May 2021 in math.CO and cs.DM

Abstract: We prove that there exists a function $f(k)=\mathcal{O}(k2 \log k)$ such that for every $C_4$-free graph $G$ and every $k \in \mathbb{N}$, $G$ either contains $k$ vertex-disjoint holes of length at least $6$, or a set $X$ of at most $f(k)$ vertices such that $G-X$ has no hole of length at least $6$. This answers a question of Kim and Kwon [Erd\H{o}s-P\'osa property of chordless cycles and its applications. JCTB 2020].

Summary

We haven't generated a summary for this paper yet.