Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A variant of the prime number theorem (2105.10844v1)

Published 23 May 2021 in math.NT

Abstract: Let $\Lambda(n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. In this note, we prove that for any $\varepsilon>0$ the asymptotic formula $$ \sum_{n\le x} \Lambda\Big(\Big[\frac{x}{n}\Big]\Big) = x\sum_{d\ge 1} \frac{\Lambda(d)}{d(d+1)} + O_{\varepsilon}\big(x{9/19+\varepsilon}\big) \qquad (x\to\infty)$$ holds. This improves a recent result of Bordell`es, which requires $\frac{97}{203}$ in place of $\frac{9}{19}$.

Summary

We haven't generated a summary for this paper yet.